Liaisons entre variables non numériques

2. Liaison entre deux variables nominales

Rappelons que les variables nominales sont des variables telles que leurs valeurs correspondent à des catégories discrètes mutuellement exclusives, mais qu'il n'existe pas de relation d'ordre entre ces modalités. On ne peut même pas les classer entre elles. Tout ce que l'on peut faire, c'est donc de compter combien d'individus tombent dans chaque modalité.

Dans ces conditions, comment peut-on évaluer la liaison entre deux variables ? Un premier élément de solution consiste à s'interroger sur ce que signifierait au contraire l'indépendance, l'idée étant que si l'on sait évaluer à quel degré des variables sont indépendantes, cela nous donne de facto une indication sur le degré auquel elles sont liées. Dans la grande leçon sur la Statistique descriptive, nous avons vu que des variables peuvent être considérées indépendantes si les valeurs prises par une variable ne sont pas affectées par les valeurs prises sur l'autre variable. Puisque, ici, nous travaillons avec des variables nominales, cela revient à dire que la distribution des effectifs dans les modalités d'une variable ne sera pas affectée par la distribution des effectifs dans l'autre variable. C'est l'idée sous-jacente au \chi^2.


A. Le Khi-2 d'indépendance (ou Khi-deux, ou Chi-2, ou encore \chi^2).

À titre d'exemple, commençons par considérer deux variables nominales dichotomiques, une variable Sexe avec deux modalités, Homme et Femme, et une variable Salaire à deux modalités, haut salaire et bas salaire. On s'intéresse à savoir s'il y a un lien entre le sexe et le salaire. On a un échantillon de sujets, et le tri croisé donne le tableau de données suivant :

La première chose que nous remarquons en regardant les marges du tableau, c'est-à-dire la colonne Total et la ligne Total, c'est que dans cet échantillon, la proportion des femmes est plus faible que la proportion des hommes. Par ailleurs, nous voyons aisément que la proportion des bas salaires est plus importante que celle des hauts salaires. Seulement voilà, il ne s'agit là que de considérations relatives chacune à une variable prise isolément, sans considération de l'autre variable. Or, ce qui nous intéresse, c'est de comprendre la liaison éventuelle entre les variables, donc de considérer les deux variables SIMULTANÉMENT.

Ce sont les cellules à l'intérieur du tableau qui nous donnent ces informations. Ainsi, par exemple, la case à l'intersection de la colonne 1 et de la ligne 1, nous renseigne sur les hommes ayant un bas salaire. Il va donc falloir comparer l'effectif observé dans cette case avec l'effectif théorique qu'on aurait en cas d'indépendance des deux variables.

Comment obtenir l'effectif théorique ? Pour traiter cette question, nous allons considérer que les marges du tableau nous donnent des informations sur les taux de base, c'est-à-dire les distributions de fréquences a priori de notre échantillon. Pour calculer l'effectif théorique de la case "Hommes à bas salaires", il nous suffit alors de multiplier le nombre total d'hommes (case Total de la ligne 1) par le nombre total de personnes à bas salaires (case Total de la colonne 1), puis à diviser le résultat par l'effectif général (ici le contenu de la case en bas à droite, soit 630) pour que la somme des effectifs théoriques des quatre cases, donne un effectif théorique total qui soit identique à l'effectif observé.

Autrement dit, dans le cas général, en notant Li le total de la ligne i et Ci le total de la colonne j, l'effectif théorique de la cellule ij est donné par la formule

t_{ij}=\frac{L_i\times C_j}{n}.

   Cela nous donne alors le tableau des effectifs théoriques :

Pour chaque case, nous sommes alors en mesure de calculer les écarts à la valeur théorique en faisant simplement la différence entre les cellules correspondantes. Par exemple, dans la case hommes à bas salaires, nous avons observé 250 sujets alors que les effectifs théoriques n'étaient que de 240. Autrement dit, nous avons un écart de +10 pour cette case : nous observons 10 hommes à bas salaires de plus que ce que nous aurions attendu sous l'hypothèse d'indépendance des variables.

Afin d'éviter les compensations, on élève chaque différence au carré. Il paraît cependant clair que la signification d'une sur-représentation (il y a plus d'individus qu'attendu théoriquement) ou d'une sous-représentation (il y a moins d'individus qu'attendu théoriquement) est à relativiser en fonction de l'effectif théorique de la case :  Le même écart de 10 sujets n'a pas le même sens selon qu'on attendait 20 ou 3000 sujets dans la case. On divisera donc le carré de l'écart par l'effectif théorique afin d'obtenir un carré pondéré de l'écart.

Il ne reste alors qu'à sommer les carrés pondérés des écarts obtenus dans chaque case pour obtenir le \chi^2. Ainsi, dans le cas général où la variable en ligne a L modalités et la variable en colonne a C modalités, et en notant oij l'effectif observé d'une case à l'intersection de la ligne i et de la colonne j, et tij son effectif théorique, nous obtenons la formule

Dans l'exemple précédent, cela nous donne donc \chi^2 =0,42+0,63+0,72+1,09 = 2,85.

On voit donc immédiatement que le \chi^2 peut dépasser 1. Il suffit aussi de considérer la formule pour se persuader qu'il ne saurait être négatif.  Le \chi^2 ne peut donc pas être assimilé à un coefficient de corrélation. En fait, comme nous l'avons dit dans l'article sur les distributions, la variable \chi^2 suit une distribution particulière et c'est l'application de techniques statistiques fondées sur cette distribution qui nous permet ensuite de décider si l'hypothèse d'indépendance est plausible ou doit être rejetée. 

Il faut noter que l'utilisation du \chi^2 est déconseillée lorsque l'effectif théorique de certaines cases est petit (plus petit que 5). Il faut donc disposer d'autres indices.


B. L'indice Phi (\phi)

C'est un indice d'association que l'on rencontre fréquemment dans la littérature, dès lors que les deux variables sont dichotomiques (elles n'ont chacune que deux modalités). Sa formule est la suivante et se calcule à partir du \chi^2 :

\phi=\sqrt{\frac{\chi^2}{N}}

Notons qu'une autre façon d'obtenir le coefficient \phi consiste à recoder chaque variable en 0 et 1, puis à calculer un simple coefficient de corrélation de Pearson sur ces variables recodées, ce qui montre bien la similarité de nature entre le coefficient \phi et une corrélation.


C. L'indice V de Cramér

Le V de Cramér est une généralisation du coefficient \phi qui permet de traiter les cas où il y a plus de deux modalités. On commence alors par calculer la valeur k=min(L,C), où la fonction min consiste représente un minimum.

Autrement dit, on prend pour k la plus petite des deux valeurs L et C, c'est-à-dire, selon la convention vue plus haut, le nombre de lignes L ou le nombre de colonnes C. L'indice V est alors donné par V=\sqrt{\frac{\chi^2}{N(k-1)}}.

Accessibility

Background Colour

Font Face

Font Size

1

Text Colour