4. Régression linéaire multiple : coefficients multidimensionnels

4.2. Les coefficients de la régression multiple

Prenons l’exemple d’une régression à deux prédicteurs : DVP est la VD, F11VN et F02J sont les prédicteurs.

Nous obtenons :

Ce tableau ressemble très fortement à celui de la régression simple mais appelle quelques commentaires.

Les B  : Comme dans la régression simple, les coefficients B de la régression multilinéaire correspondent aux constantes qui définissent le poids de chaque prédicteur dans l’équation de régression.

L’équation ici est donc DVP = -4.048 + 0.236*F11VN + 0.751*F02J.

C’est l’équation du plan dans la figure vue plus haut.

Les bêtas : Comme dans la régression simple, ce sont les coefficients standardisés. On passe des β aux b par la relation


où σ y et σ i représentent les écarts-types de la VD et de la VI, respectivement.

On passe des b aux β par la relation inverse

 

Attention :Il s’agit des écarts-types de la population et non des écarts-types corrigés (ce qui explique qu’on les note ici σ et non s).

Accessibilité

Couleur de fond

Font Face

Taille de police

1

Couleur de texte