Résumé de section

  • GL1 GL2 GL3 GL4

    La partie "Comprendre" est organisée autour de quatre « Grandes Leçons », chacune composée d'une série d'articles d'une ou plusieurs pages, et se concluant par un QCM d'auto-évaluation.

    • Cette grande leçon introduit la statistique inférentielle et la psychométrie appliquée, ceci dans la  perspective de permettre aux étudiants de comprendre les enjeux épistémologiques, scientifiques et techniques de ces matières. Ces enjeux comprennent en particulier la mise au point de méthodes objectives pour l’étude de la variabilité induite expérimentalement ou observée en condition naturelle.

      Cette leçon est essentielle pour comprendre les suivantes, car tous les concepts de base de la statistique inférentielle y sont expliqués.

    • Le titre développé de cette grande leçon est « Du qualitatif au quantitatif : théorie et applications ». Consacrée à la psychométrie, elle approfondit la problématique de la mesure en psychologie selon deux perspectives. 

      • D’une part, il s’agit d’expliciter la construction d’un observable comme le processus de composition d’applications, processus qui permet de transcrire des énoncés qualitatifs en énoncés quantitatifs. 
      • D’autre part, il s’agit de montrer comment l’utilisation des prévisions qu’il est possible de dériver statistiquement à partir des « sorties » de l’observation psychotechnique étaye l’intervention du psychologue dans des problématiques de dépistage, de sélection et de conseil.

    • Cette grande leçon introduit les principales stratégies permettant de comparer des moyennes par rapport à une valeur de référence ou des moyennes entre elles. Le test de student est étudié en détail, ainsi que l'ANOVA à un facteur. On introduit les concepts de comparaisons planifiées et tests-post-hoc.

    • Cette grande leçon présente, sous l'angle de la statistique inférentielle, les principales méthodes pour tester l'existence d'une association entre variables : corrélations de variables numériques (r de Pearson) ordinales (\rho de Spearman, \tau de Kendal), ou nominales (\chi^2 et \phi). Après un rappel de la régression linéaire simple, on introduit la corrélation partielle. Finalement, cinq articles sont consacrés à la corrélation multiple.

Accessibilité

Couleur de fond

Font Face

Taille de police

1

Couleur de texte